DNTP study shows that a BPA derivative induces uterine fibrosis
A ubiquitous environmental contaminant called tetrabromobisphenol A (TBBPA) causes the induction of fibrosis and cell proliferation of human uterine fibroid cells, according to researchers from the Division of the National Toxicology Program (DNTP).
TBBPA is a bisphenol A (BPA) derivative that is widely used as a flame retardant across the globe. The prevalent and persistent chemical readily accumulates in plants, humans, and wildlife. TBBPA exposure can disrupt hormones in animals, raising concerns over its potential toxicity. Animal studies have shown that neonatal BPA exposure can cause uterine leiomyomas — hormone-responsive benign smooth muscle tumors called fibroids that are commonly diagnosed in women. Whether TBBPA has a similar effect is not clear.
Researchers developed a 3-D culture system consisting of human uterine-fibroid cells to closely mimic tumors in humans. Short-term TBBPA treatment increased cell proliferation and promoted fibrosis of uterine fibroid cells by activating fibrosis genes and the transforming growth factor-beta signaling pathway.
According to the authors, the results demonstrate that the new in vitro model is a successful, much-needed strategy for studying the effects of environmental exposures on human uterine fibroids. Moreover, the findings shed light on the molecular mechanisms by which TBBPA exposure contributes to fibroid development, and thereby potentially poses a health risk to women. (JW)
Citation: Liu J, Yu L, Castro L, Yan Y, Clayton NP, Bushel P, Flagler ND, Scappini E, Dixon D. 2022. Short-term tetrabromobisphenol A exposure promotes fibrosis of human uterine fibroid cells in a 3D culture system through TGF-beta signaling. FASEB J 36(2):e22101.