DNTP uses large-scale approach to assess chemical cardiovascular risk
High-throughput screening coupled with computational models predicts the likelihood that a compound will inhibit the human ether-a-go-go-related gene (hERG) potassium channel, according to researchers from the NIEHS Division of the National Toxicology Program (DNTP).
Disrupting hERG activity can trigger abnormal heart rhythms and lead to sudden death. Many drugs have been withdrawn from the market due to severe heart disease from hERG inhibition. However, toxicological screening methods using animal models are slow and costly, and such methods can present ethical issues and produce results that may not translate to humans.
To overcome these shortcomings, the researchers used a quantitative high-throughput screening approach to evaluate nearly 10,000 diverse drugs and environmental chemicals for their ability to alter hERG functioning in human cells. By applying several machine-learning techniques to their robust and reliable dataset, the researchers built statistical models for predicting the probability that compounds will inhibit the hERG channel.
The resulting data and algorithms are provided in an open-access format to facilitate their widespread application to drug development and environmental chemical screening. This large-scale approach could rapidly and efficiently yield critical information about the potential of more than 100,000 undertested compounds to pose a cardiovascular risk to public health, helping to prioritize chemicals for extensive toxicological evaluation.
Citation: Krishna S, Borrel A, Huang R, Zhao J, Xia M, Kleinstreuer N. 2022. High-throughput chemical screening and structure-based models to predict hERG inhibition. Biology (Basel) 11(2):209.