U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Environmental Factor

Environmental Factor

Your Online Source for NIEHS News

June 2017

New NIH approach to grant funding

On May 2, National Institutes of Health Director Francis Collins, M.D., Ph.D., described an initiative regarding research grant awards.

Editor's note: The following is excerpted from a statement issued May 2 by National Institutes of Health (NIH) Director Francis Collins, M.D., Ph.D. On June 7, NIH Principal Deputy Director Lawrence Tabak, D.D.S., Ph.D., will discuss the new approach at the National Advisory Environmental Health Sciences Council meeting. Tune into the webcast to learn more.

Today, we want to put forward a new approach to making sure that we are exercising optimum stewardship of the funds that we receive from taxpayers. We will be discussing this approach with our Advisory Councils over the next few weeks, and so we wanted to provide this broad public description.

This initiative aims to take advantage of new and powerful ways to assess the effectiveness of NIH research investments, to be sure that the funds we are given are producing the best results from our remarkable scientific workforce. We would pursue this strategy regardless of the level of budget support.

Over the last several years, NIH has been acting to address a biomedical research workforce dangerously out of balance. While we have made progress in reversing the decline in grant funding to early-career investigators through various programs and policies, the percentage of NIH awards that support this group remains flat.

Unfortunately, gains for early-career investigators have been offset by a decline in the percentage of NIH awards that support mid-career investigators. The only group for which the percentage of grant funding is increasing is late-career investigators.

Moreover, the distribution of NIH grant funding is highly skewed, with 10 percent of NIH-funded investigators receiving over 40 percent of NIH funding. While that might be just fine if the data suggested that this is the best way to get results, analyses conducted by both NIH and others [citations below] has shown that incremental research output gradually diminishes as the amount of support per investigator increases.

And because scientific discovery is inherently unpredictable, there are reasons to believe that supporting more researchers working on a diversity of biomedical problems, rather than concentrating resources in a smaller number of labs, might maximize the number of important discoveries that can emerge from the science we support and thus, returns on the taxpayers’ investments.

To address this new evidence, NIH will be implementing an additional measure to bring the workforce back into equilibrium by working with NIH grant applicants [and] recipients to limit the total NIH grant support provided to an individual principal investigator through NIH-supported research. We call it the Grant Support Index (GSI). It is not a new concept, although it is a new name. We introduced it as the Research Commitment Index.

In fact, in 1985, Bruce Alberts, Ph.D., called for the NIH to limit the amount of support it would give to any one investigator, citing both diminishing returns and investigator bandwidth. In 2015, the Federation of American Societies for Experimental Biology, one of the largest scientific organizations in the world [and], representing over 30 scientific societies, made the recommendation to limit the total funding to an individual researcher or laboratory. A similar consensus recommendation emerged from a major stakeholders meeting convened at the University of Wisconsin, Madison later that year.

The GSI does not solely focus on grant money, since differing areas of research inherently incur differing levels of cost. Instead, GSI assigns a point value to the various kinds of grants based on type, complexity, and size.

Applications for NIH-funding that will support researchers who have GSIs over 21, [which is] the equivalent of three [single researcher] awards, will be expected to include a plan in their applications for how they would adjust those researchers’ existing grant loads to be within the GSI limits if their application is awarded.

While implementation of a GSI limit is estimated to affect only about six percent of NIH-funded investigators, we expect that it [could] free up about 1,600 new awards, to broaden the pool of investigators conducting NIH research and improve the stability of the enterprise.

Over the next few months, NIH will be seeking feedback from the scientific community on how best to implement the GSI limit. There are still many details of the policy that need to be worked out, and we want those details to be informed by the community. You’ll be hearing more about this effort and opportunities to provide input from NIH Deputy Director for Extramural Research Michael Lauer, M.D., through his Open Mike Blog.

Basson J, Lorsch J, Dorsey T. Revisiting the Dependence of Scientific Productivity and Impact on Funding Level. NIGMS Feedback Loop Blog. (2016).

Doyle JM, Quinn K, Bodenstein YA, Wu CO, Danthi N, Lauer MS. 2015. Association of percentile ranking with citation impact and productivity in a large cohort of de novo NIMH-funded R01 grants. Mol Psychiatry 20(9):1030−1036.

Lauer MS, Danthi NS, Kaltman J, Wu C. 2015. Predicting productivity returns on investment: thirty years of peer review, grant funding, and publication of highly cited papers at the National Heart, Lung, and Blood Institute. Circ Res 117(3):239−243.

Lauer M. Following up on the Research Commitment Index as a Tool to Describe Grant Support. Open Mike Blog. (2017).

Fortin JM, Currie DJ. 2013. Big science vs. little science: how scientific impact scales with funding. PLoS One 19;8(6):e65263.

Cook I, Grange S, Eyre-Walker A. 2015. Research groups: How big should they be? PeerJ 3:e989.

Javitz H, Grimes T, Hill D, Rapoport A, Bell R, Fecso R, Lehming R. 2010. U.S. Academic Scientific Publishing. Working paper SRS 11-201. Arlington, VA: National Science Foundation, Division of Science Resources Statistics.

Fortner R. Diminishing returns?: U.S. Science Productivity Continues to Drop. Scientific American. December 6, 2010.

Back To Top